MicroRNA-423-5p facilitates hypoxia/reoxygenation-induced apoptosis in renal proximal tubular epithelial cells by targeting GSTM1 via endoplasmic reticulum stress
نویسندگان
چکیده
It has been reported that microRNAs (miRs) can regulate renal response to acute injury and members of them are believed to be important in maintenance of renal function and development of renal injury. We investigated the actions of microRNA-423-5p (miR-423-5p) and glutathione-S-transferase (GST) M1 after acute kidney injury. MiR-423-5p was up-regulated and GSTM1 was down-regulated in human kidney (HK-2) cells subjected to hypoxia/reoxygenation (H/R) and in rat kidneys subjected to ischemia/reperfusion (I/R) injury. Dual luciferase assays revealed miR-423-5p binding to the 3' untranslated region of GSTM1. Proliferation was lower and apoptosis, ER stress and oxidative stress were all higher in H/R-treated HK-2 cells transfected with or without miR-423-5p mimics and GSTM1 siRNA than in the same cells transfected with miR-423-5p inhibitors and a GSTM1 expression vector. Increased miR-423-5p and decreased GSTM1 mRNA and protein levels were observed in rat kidneys on days 1, 2 and 7 after I/R. Levels had normalized by days 14 and 21. On day 3 after treatment, rats receiving I/R or I/R plus miR-423-5p mimics exhibited higher serum creatinine and urea nitrogen levels than rats receiving I/R plus a miR-423-5p inhibitor. MiR-423-5p and lower GSTM1 mRNA and protein levels were higher in the I/R and I/R plus miR-423-5p mimic groups than in the I/R plus miR-423-5p inhibitors group. These findings demonstrate that after acute kidney injury, miR-423-5p induces ER stress and oxidative stress by inhibiting GSTM1and suppresses repair.
منابع مشابه
Hypoxia-reoxygenation induced necroptosis in cultured rat renal tubular epithelial cell line
Objective(s): The aim of this study is to explore the potential role of hypoxia/reoxygenation in necroptosis in cultured rat renal tubular epithelial cell line NRK-52E, and further to investigate its possible mechanisms.Materials and Methods: Cells were cultured under different hypoxia-reoxygenation conditions in vitro. MTT assay was used to measure the cell proliferation...
متن کاملMicroRNA-30c-5p ameliorates hypoxia-reoxygenation-induced tubular epithelial cell injury via HIF1α stabilization by targeting SOCS3
The cellular hypoxia-reoxygenation (H/R) model is an ideal method to study ischemia-reperfusion injury, which is associated with high mortality. The role of microRNA-30c-5p (miR-30c-5p) in the H/R epithelial cell model remains unknown. In the current study, we observed a significant reduction in apoptosis when miR-30c-5p was up-regulated. We also found decreased levels of C-caspase-3 (C-CASP3) ...
متن کاملReceptor-mediated endocytosis is a Trojan horse in light-chain nephrotoxicity.
in albumin-induced apoptosis in proximal tubule cells. J Am Soc Nephrol 18: 1199–1208, 2007 9. Ohse T, Inagi R, Tanaka T, Ota T, Miyata T, Kojima I, Ingelfinger J, Ogawa S, Fujita T, Nangaku M: Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal tubular cells. Kidney Int 70: 1447–1455, 2006 10. Wu X, He Y, Jing Y, Li K, Zhang J: Albumin overload induces apoptosis in ren...
متن کاملMicroRNA-205 inhibits renal cells apoptosis via targeting CMTM4
Objective(s):MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression. They have important roles in kidney development, homeostasis and disease, and participate in the onset and progression of tubulointerstitial sclerosis and end-stage glomerular lesions that occur in various forms of chronic kidney disease (CKD). In the present study, we elucidated the role of microR...
متن کاملStearoyl-CoA Desaturase-1 Protects Cells against Lipotoxicity-Mediated Apoptosis in Proximal Tubular Cells
Saturated fatty acid (SFA)-related lipotoxicity is a pathogenesis of diabetes-related renal proximal tubular epithelial cell (PTEC) damage, closely associated with a progressive decline in renal function. This study was designed to identify a free fatty acid (FFA) metabolism-related enzyme that can protect PTECs from SFA-related lipotoxicity. Among several enzymes involved in FFA metabolism, we...
متن کامل